

PBOEACO
gate automations

IN CASE OF A PERMANENT SHORT CIRCUIT, CUT THE MAN power off, remove the terminal blocks $2 A$ and $2 B$, wait

THE FUSE WILL BE AUTOMATICALLY RESTORED.
FInd and remove the short circuit cause before plugging the terminal blocks in.

PROGRAMMING THE RADIO $\boldsymbol{\Gamma}$
IMPORTANT: BEFORE PROGRAMMING FOR THE FIRST TIME THE RADIO RECEIVER, DELETE ALL THE RECORDED TEST CODES. SEE FUNCTION r AT THE BOTTOM OF THIS CHAPTER

「 = DISPLAYING STORED CODES
Press the button A repeatedly until the display shows r R Press button B until the display shows r =
The display will now cycle trough each stored code from 01 to 50
TO ERASE A SINGLE STORES CODE
Press button \mathbf{D} when the number of the code to be removed is displayed
kc
STORING NEW REMOTE CONTROL CODE
Press the button A repeatedly until the display shows $r 9$

- Press button B until the display shows $L C$

Press and hold the remote control button until a dot appears on the display (this press button \mathbf{C} to store the new code

- 1 STORING NEW REMOTE CONTROL CODE with STOP functio Press the button A repeatedly until the display shows r f
Press and hold the remote control button until the dot appears on the display and simultaneously press button C to store the new code.

II STORING NEW REMOTE CONTROLCODE with PEDESTRIAN function Press the button A repeatedly until the display shows Γ R
Press button \mathbf{B} until the display shows ${ }^{\circ}{ }^{\circ}$ d
Press and hold the remote control button until the dot appears on the display and simultaneously press button C to store the new code

- DELETING ALLSTORED CODES

Press the button A repeatedly until the display shows 8
Press button B until the display shows r I
Press and hold button D until the display shows $\Gamma=$ This indicates that all the codes have been erased

PROGRAMMING THE Q36S NEW PARAMETERS <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">\square</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">\square</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| \square | \square |
| :--- | :--- |</table-markdown></div>

Method $\mathbf{1}=$ STANDARD
Method $\mathbf{2}=$ SEQUENTIAL

Warning

Before powering up and programming the control unit refer to the wiring scheme and then
Check that the motor connections are correct
Check that the photocell connections are correct
Ihe photocells are not installed in closing phase, you must link terminals 3 and 9 .
Che photocells are not installed in opening phase, you must link terminals 4 and 9 .
Check that the control connections are correct. Important:
If an emergency stop button is not fitted, you must link terminals 2 and 8
4 Use the motor release key supplied to disengage the electric motor from the te and re-engage.
5 Power the control unit up

STANDARD PROGRAMMING PROCESS (Method 1)

a) Give a START signal (terminal 1 and terminal 8)

After an opening movement of about 240 mm , the deceleration phase will start (since the control board is pre-adjusted for an opening of $2,50 \mathrm{~m}$). T he motor will wait about 3 seconds and after that will start again with the closing phase
b) Give a START signal to verify which functions and times are not suitable with the installation and take note.
c) Enter the programming phase through the buttons \mathbf{A} and \mathbf{B} to reach the wished parameter
Use the buttons \mathbf{C} and \mathbf{D} to change or confirm every single parameter
e) IMPORTANT: save the changes by selecting the parameter $5 \|$ and pushing the button C .

Example:
Increase the motor working time by 5 seconds
With the switched on control board, ensure that the display shows : \longrightarrow -
Press button A until the display shows $\longrightarrow p R$
Press button B until the display shows $\longrightarrow \mathrm{nl}$
Wait
Press 5 times the \mathbf{C}
Press button B untir the display shows \longrightarrow 21
unt the display shows \longrightarrow until the display shows $\longrightarrow 21$
until the display shows $\longrightarrow 25$ until the display shows $\longrightarrow \mathrm{5} \mathrm{J}$
Press the button C for some seconds
The motor working time has been increased from

SEQUENTIAL PROGRAMMING (method 2)

SLIDING GATE SEQUENTIAL PROGRAMMING

a) Press button \mathbf{A} (steps through the top menu) until the display shows 85
b) Press button \mathbf{B} (steps through the sub-menu) until the display shows in
c) Give a START signal: the leaf starts opening and the display shows 7 If
d) Wait until the leaf has done the 90% of the opening cycle and then give another START signal: the display shows Γ^{\prime} and the deceleration phas begins.
e) When the opening phase has been completed (OPENING LIMIT SWITCH) and the display shows $L I$, the control board has stored the opening and deceleration times and starts calculating the "stay open" (pause) time
f) At the reaching of the desired pause time, give another START impulse. The control board has stored the "stay open" time and the gate starts the closing cycle.

When the closing cycle has completely finished, till the complete closure of the gate, the control unit automatically exits from the sequential programming process and all the working times have been saved

SELF-DIAGNOSIS DISPLAY MESSAGES

Fotocellula o
FOTOCELLULA O in APERTURA
Closing phase photocell beam interruoted

Both opening and closing HASE PHOTOCELL BEAM STOP PRESSED
(OR OPEN CIRCU or open circuit between terminal 2 \& 8)

LIMIT SWITCH IN OPENING PHASE

LIMIT SWITCH IN CLOSING PHASE

PEDESTRIAN START SIGNAL (Short circuit between terminali \& 8) Start signal (SHORT CIRCUIT BETWEEN
TERMINAL $~ \& ~ \& ~ 8) ~$ Radio fob Continuously

SPECIAL FUNCTIONS

[] AUTOMATIC CLOSING FUNCTION When set to YES ("SI"):

- an impulse during the opening phase will stop the motors until another impulse is received an impulse during the closing phase will stop and
reverse the motors reverse the motors
When set to NO, the step-by-step operation is active: $1^{\text {st }}$ impulse starts the opening phase
$3^{\text {did impulse stops the opening phase }}$

MOTOR PROBLEM (WIRING TORQUE SETTING TOO LOW)

TERMINAL BLOCK CONNECTIONS

EARTH TERMINAL BLOCK CONNECTIONS

Terminal block I

Terminal block 2

Terminal block 3

Terminal block 4

Connect the yellow/green network cable to earth terminal \mathbf{B}.

TERMINAL BLOCK1 CONNECTIONS

```
21 Antenna or radio receiver signal
2 Sheath or negative for radio receiver
```


TERMINAL BLOCK 2 CONNECTIONS

1-8 Start control normally open (NA) for button, key selector , radio receiver or Timer clock connection.
The Start control starts the programmed running cycle
Stop controi normally closed (NC). Emergency button
pressed the gate stops immediately.
In Opening phase and Break-time: at the first impulse the gate closes In Closing phase: at the first impulse the gate opens.
ff, temporarily, the Stop contact is not used, link terminal 2 with terminal 8.
nput of safety rubber edges and of safety photocell in closing phase.
都 of several safety photocelis in closing phase.
.
In closing phase: Stop, break-time for 2 seconds, opening phase again.
If, temporarily, the photocell contacts are not used, link terminal 3 with terminal 9 .
3-9 Input only for safety rubber edges in closing phase.
The contacts must be connected in series if there is more than one safety rubber edge
Normally closed (NC).
In opening phase: does not work.
4-
opening phase (for sliding gate)
ormaly closed (NC).
In closing phase: does not work
If you also want to connect the safety rubber edges, you must connect in series their contacts with the photocell ones.
If, temporarily, the photocell contacts are not used, link terminal 4 with terminal 9
4-9 Input safety rubber edges in opening phase (for sliding gate).
Normally closed (NC).
In opening phase: Stops and changes direction for 3 seconds
In closing phase: does not work
Using more than one safety rubber edges, the contacts must be connected in series
6-8 Limit switch input in opening phase
7-8 \quad Pedestrian start input. Normally open (NA). On
Output for photocell receiver power supply.
Output for extra 24 V dc accessories power supply
With all Standard accessories included 100 m A are still available for extra accessories
9-10 Output for photocell transmitter power supply.
11-12 Blinker intermittent output. 24V 20W max.

TERMINAL BLOCK 3 CONNECTIONS

13 Motor M1- output (13 Black; 14= Blue; 15= Brown)
14 The motor is preset to be fixed on the right side of the gate (looking from the interior side). If you fix the motor on the left side, you
15 have to exchange the wire 13 with the 15 (motor) and the wire 5 with the 6 (limit switch) in the control board
Capacitor between connector 13 and 15

TERMINAL BLOCK 4 CONNECTIONS

1 START

Terminal block 2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (II) (12)

3 PERMANENT START COMMAND WITH TIMER (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

4 EMERGENCY STOP BUTTON
RMINAL BLOCK 2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (II) (12)

N.B.: Link terminals 2 and 8 if an emergency STOP button is NOT USED
Terminal block 2

5 MOTOR AND LIMIT SWITCH

IF IT IS MOUNTED ON THE LEAF-HAND SIDE (looking the inside)
TO INVERT WIRE 13 WITH WIRE 15 END WIRE 5 WITH WIRE 6

6 CONNECTING PHOTOCELL IN CLOSING PHASE

TERMINAL bLock 2

CONNECTING PHOTOCELL IN OPENING PHASE

WIRING SCHEME USED FOR INSTALLING TWO PAIRS OF SAFETY

 PHOTOCELLS IN THE CLOSING PHASE

If you need to connect the two pairs of cells in OPENING phase instead of closing phase, simply move the wire that is shown connected to terminal 3 into terminal 4

Tel: 01202717191 Fax: 01202717195
Unit 16c, Chalwyn Industrial Estate, St Clements Road, Poole, Dorset, BH12 4PE Register No.: 4287804, Screwjack Ltd trading as Proteco UK, VAT No.: 785345006

